Federal Aviation Administration, DOT

- (2) The percentage of castings inspected by nonvisual methods may be reduced below that specified in subparagraph (d)(1) of this section when an approved quality control procedure is established.
- (3) For castings procured to a specification that guarantees the mechanical properties of the material in the casting and provides for demonstration of these properties by test of coupons cut from the castings on a sampling basis—
- (i) A casting factor of 1.0 may be used: and
- (ii) The castings must be inspected as provided in paragraph (d)(1) of this section for casting factors of "1.25 through 1.50" and tested under paragraph (e)(2) of this section.
- (e) Non-structural castings. Castings used for non-structural purposes do not require evaluation, testing or close inspection.

[Doc. No. 4080, 29 FR 17955, Dec. 18, 1964, as amended by Amdt. 23–45, 58 FR 42164, Aug. 6, 1993]

§23.623 Bearing factors.

- (a) Each part that has clearance (free fit), and that is subject to pounding or vibration, must have a bearing factor large enough to provide for the effects of normal relative motion.
- (b) For control surface hinges and control system joints, compliance with the factors prescribed in §§23.657 and 23.693, respectively, meets paragraph (a) of this section.

[Amdt. 23–7, 34 FR 13091, Aug. 13, 1969]

§23.625 Fitting factors.

For each fitting (a part or terminal used to join one structural member to another), the following apply:

- (a) For each fitting whose strength is not proven by limit and ultimate load tests in which actual stress conditions are simulated in the fitting and surrounding structures, a fitting factor of at least 1.15 must be applied to each part of—
 - (1) The fitting:
 - (2) The means of attachment; and
- (3) The bearing on the joined members.
- (b) No fitting factor need be used for joint designs based on comprehensive

test data (such as continuous joints in metal plating, welded joints, and scarf joints in wood).

- (c) For each integral fitting, the part must be treated as a fitting up to the point at which the section properties become typical of the member.
- (d) For each seat, berth, safety belt, and harness, its attachment to the structure must be shown, by analysis, tests, or both, to be able to withstand the inertia forces prescribed in §23.561 multiplied by a fitting factor of 1.33.

[Doc. No. 4080, 29 FR 17955, Dec. 18, 1964, as amended by Amdt. 23–7, 34 FR 13091, Aug. 13, 1969]

§23.627 Fatigue strength.

The structure must be designed, as far as practicable, to avoid points of stress concentration where variable stresses above the fatigue limit are likely to occur in normal service.

§ 23.629 Flutter.

- (a) It must be shown by the methods of paragraph (b) and either paragraph (c) or (d) of this section, that the airplane is free from flutter, control reversal, and divergence for any condition of operation within the limit V-nenvelope and at all speeds up to the speed specified for the selected method. In addition—
- (1) Adequate tolerances must be established for quantities which affect flutter, including speed, damping, mass balance, and control system stiffness; and
- (2) The natural frequencies of main structural components must be determined by vibration tests or other approved methods.
- (b) Flight flutter tests must be made to show that the airplane is free from flutter, control reversal and divergence and to show that—
- (1) Proper and adequate attempts to induce flutter have been made within the speed range up to $V_{\rm D}$;
- (2) The vibratory response of the structure during the test indicates freedom from flutter;
- (3) A proper margin of damping exists at $V_{\scriptscriptstyle \rm D};$ and
- (4) There is no large and rapid reduction in damping as $V_{\rm D}$ is approached.